天盟传媒 - 一个会员自行传媒的平台,人人都是传媒者!

标题: 利用量子编码技能,微观纪元成功揭示化学体系的量子胶葛布局 [打印本页]

作者: 丢那声    时间: 2023-2-5 00:14
标题: 利用量子编码技能,微观纪元成功揭示化学体系的量子胶葛布局

克日,微观纪元的量子盘算化学团队利用量子编码技能揭示出化学体系中简朴而优美的量子胶葛布局,并在此基础上快速求解出体系基态的近似能量
这一突破性希望有望在盘算化学和量子算法范畴均引起重大厘革。论文原文可在预印本平台arXiv举行查阅。

量子力学的创建为化学体系中电子布局的形貌提供了根本原理,也就是Schrdinge方程。但是,Schrdinger方程的精确求解是极为困难的。
对于只有一个电子的氢原子和类氢离子,我们可以得到解析解。但是对于哪怕只有两个电子的H2分子,我们到现在为止仍旧只能依靠极为繁琐的数值方法。
无奈之下,物理学家/化学家们想出了一套近似求解方法:Hatree-Fock近似。简朴来说,就是把电子一个个隔离出来单独求解,再以得当的方式拼在一起。如果电子之间相对独立,这么做的结果还不错;但如果电子之间存在很强的关联,或者说量子胶葛,其结果往往很差。
如下图所示,Hartree-Fock近似给出的H2能量在键长较小时与精确值较为接近,但在键长较大时相去甚远。后来人们又在Hatree-Fock近似基础上做了各种改进,但并没能从根本上办理这一标题。

有一种观点认为,电子的费米子特性是这一难题的根源。
费米子的诡异性质之一就是,交换两个雷同的费米子会带来一个负号,要再交换一次才能还原。与之相对的,跟我们的直觉更相符的粒子则被称为玻色子,比方光子。
早在1928年,Jordan和Wigner就找到了将有序费米子体系转换为玻色子体系的方法。量子盘算兴起之后,因为实际构建的量子比特都是玻色子,人们又发明了别的两种将费米子转换为玻色子的变换方法。
但是,做了这些变换之后,电子相互作用的Hamilton量(可以简朴地理解为能量)的表达式似乎更加复杂了,相应的Schrdinger方程也更加复杂。这就使得寻找电子胶葛布局的标题更加空中楼阁。
>>>
我们团队得以初步办理这一难题的关键是利用了量子信息学家们在上世纪末发展起来的量子编码技能,特别是其中的稳固子(stabilizer)表述。
对于物理学家来说,有一个非常直接的方法来理解这一表述:所谓稳固子,可以粗略地理解为“一组相互对易的力学量”;而稳固子态,就是它们的“共同本征态”,且本征值均为1。
只不过对于量子比特来说,稳固子表述具有更加丰富而优美的数学布局。有了稳固子这一“火眼金睛”,电子体系的胶葛布局可以说一目了然。
下面我们仍旧用H2分子的基态来简朴说明。
>>>
我们知道H2分子有两个原子轨道,思量到电子自旋,会有四个自旋轨道。相应地,我们可以用四个量子比特去形貌。利用对称性可以将量子比特数减少(tapering)为两个。这一步不是必须的,但可以让结果更加显然。
如许一来,我们会得到如下的Hamilton量(键长为0.74  ):
H = -1.0534210769165204 * II
+ 0.39484436335590356 * IZ
- 0.39484436335590367 * ZI
+ 0.1812104620151969 * XX
- 0.011246157150821112 * ZZ.
其中I是2*2单位矩阵,XYZ是Pauli矩阵。当键长很大,比如在2.8 时,Hamilton量如下
H' = -0.8284676561247681 * II
+ 0.016170000066607376 * IZ
- 0.016170000066607328 * ZI
+ 0.2930431286727852 * XX
- 0.0001469354633982234 * ZZ.
请肯定要注意系数巨细的变化!
>>>
现在我要告诉你,对于前者,稳固子是-IZZI,稳固子态是|01>,也就是直积态/Hatree-Fock态;对于后者,稳固子是-XXZZ,稳固子态是两比特胶葛态:

如果你没能一眼看出来,说明你还必要回太上老君的八卦炉里再修炼一阵。
固然也许这个标题并不像我说的这么简朴。因为据说化学家们20多年前就已经得出Hamilton量的类似表达式了,但他们似乎并没能从中看出电子的胶葛举动。
将每个距离处的Hamilton量分别作用到这两个态上,再取它们中的较小值,会得到以下曲线:

可以看到,仅仅利用一个简朴的两比特胶葛态,就几乎找回了全部的电子关联能!让人不得不感叹,原来真的是“大道至简”!
>>>
你可能会猜疑这是因为H2分子比力简朴,才会有这么简朴的胶葛举动。
我们进一步在LiH和BeH2体系中做了探索,发现了极为相似的胶葛布局。简朴来说,就是这些分子会先把多出的电子按照Hartree-Fock方法填到轨道中,再把末了的两个活泼电子按照与H2类似的方式胶葛在一起。
我们下一步打算研究更加复杂的分子,以求找出更加复杂的胶葛情势。
你可能还会问,你利用胶葛布局并没能得到图中的精确基态能量。的确云云。量子胶葛只是量子盘算的骨架,还必要一些更加精细的操作才能让她血肉丰满起来,进而发挥全部威力。大天然也同样云云。
>>>
末了我们借用著名华人物理学家文小刚老师的一些理念来作为总结。他认为,大天然在根本上实在是一些相互胶葛的量子比特的海洋,而所谓的费米子特性不过这些量子比特团体运动呈现出的一种表面现象。
在这里的化学体系中,大天然先把量子比特两两胶葛起来,再把它们伪装成费子,用如许的双重编码蒙蔽了我们近一个世纪。
现在我们利用量子盘算和量子信息技能,终于开始渐渐揭开大天然的秘密面纱,这怎不令人冲动万分?
论文信息:
StabilizerApproximation, Xinying Li, Jianan Wang, Chuixiong Wu, Fen Zuo, https://arxiv.org/abs/2209.09564
Github链接:
https://github.com/MiqroEra/Stabilizer
作者简介:左芬,上海微观纪元数字科技有限公司算法总监。中国科大理论物理学博士,本科就读于中国科大少年班,在中科院理论物理所、高能物理所、意大利国家核物理研究所从事博士后工作,曾任华中科技大学副传授。重要研究方向为粒子物理、弦论、量子盘算和相关代数布局。




欢迎光临 天盟传媒 - 一个会员自行传媒的平台,人人都是传媒者! (https://tianmg.com/mp/) Powered by Discuz! X3.4